

FACULTY OF SCIENCES DEPARTMENT OF ENGLISH COURSE: B.Sc. SEMESTER-III (All Sciences) SUBJECT NAME: Communication Skills in English-I SUBJECT CODE: 4SC03CSE2

Teaching & Evaluation Scheme:

Tea	ching	hour	s/week	Credit			Eva	luatior	1 Schem	e/semest	er	
					Theory Prace				Practi	ical		
Th	Tu	Pr	Total		Sessio Exai		Univer Exai	·	Inte	rnal	University	Total Marks
					Marks	Hrs	Marks	Hrs	Pr	TW		
2	0	0	2	2	30	1.5	70	3				100

Objectives:

- To develop them for Interpersonal Skills, with importance of Active Listening and Reading Non-Verbal Cues.
- To compete them in communication skills related to production and presentation of messages in multiple formats.
- To enable and demonstrate their critical thinking skills related to the analysis, interpretation, and criticism of messages.
- To litigate them in skills related to the construction and analysis of argumentation and persuasive discourse.
- To make them display an understanding of multiple theoretical perspectives and diverse intellectual traditions in Communication.
- To compete them in human relational interactions at work place.
- To make them viable to analysis and practice of ethical communication.
- To develop their feasibility for free expression and the responsibilities it entails.

Prerequisites:

- Students should have basic knowledge of English Language and grammar.
- Students should have ability to speak and write correct sentences in their day to day language.
- Students should be familiar with correct usage of language.

Course outline:

Unit	Content In Details Including Its Sub Topics	Minimum Number of Hours				
No.	Content in Details including its bus Topies	Theor	Practical	Total		
	Section: A: Reading and Writing Skills	У	Tuctical			
	Basic Concepts of Communication					
	Meaning and objectives of communication					
01	Functions of communication	06		06		
01	Definitions of communication	06		00		
	Process of communication					
	Scope of communication					

	Levels of Communication			
	Intra Personal Communication			
02	Extra Personal Communication	03		03
02	Inter Personal Communication	00		
	Organizational Communication			
	Mass Communication			
	Oral Communication			
	Face to Face Discussion			
03	Telephone or Cellular Phone	02		02
05	Lecture/ Seminar/ Conference / Presentation	02		02
	Interview			
	Advantages and Disadvantages			
	Written Communication			
	Letter			
04	E-mail	03		03
	Notice/circular/reports			
	Advantages and Limitations of Written Communication			
	Non Verbal Communication			
	Body Language			
	Personal Appearance			
	Postures (arms, handshake, hands in pocket, clenching of fist,			04
05	sitting and standing postures)	04		
05	Gesture			
	Facial Expression			
	Eye Contact			
	Paralanguage			
1	Pros and cons of Non-verbal Communication			
	Barriers to Communication and Steps to Overcome:			
	Mechanical Barriers			
	Socio-psychological Barriers			
06	Cultural Barriers	04		04
	Semantic Barriers			
	Sender- oriented Barriers			
	Receiver-oriented Barriers			
	Section: B Literature			
07	The Old Man and the Sea- Earnest Hemingway	08		08
D	The Ora Man and the Sea- Damest Heiningway			L

Resources:

- 1. *Technical Communication: Principles and Practice*, Meenaxi Raman and Sangeeta Sharma, Oxford Press.
- 2. Effective Personal Communication Skills for Public Relations, Green Andy, Kogan Page Limited.
- 3. Basic Business Communication, Flatly and Lesicar.
- 4. Technical Communication, D. K. Chakradev, Tech-max publication.
- 5. Basic Business Communication, by Flatly and Lesicar.
- 6. Prerequisites of Business Communication, Dr. M. N. Padia, Self-Publication.
- 7. Basic Communication Skills for Technology, Andrea J. Rutherford, Pearson Education.

FACULTY OF SCIENCES DEPARTMENT OF LIFE SCIENCES

SEMESTER: III

COURSE: B.Sc. SE SUBJECT NAME: Microbial Physiology and Metabolism SUBJECT CODE: 4SC03MPM1 Teaching & Evaluation Scheme:-

-		0										
Tea	ching	hour	s/week	Credit			Evalu	ation S	chem	e/seme	ster	
						The	eory			Pra	ctical	
Th	Tu	Pr	Total		Sessio Exai		Univer Exai	•	Internal		University	Total Marks
					Marks	Hrs	Marks	Hrs	Pr	TW		
4	0	4	8	6	30	1	70	3	30	-	70	200
						•						

Objectives:- The objective of this course is that the students can learn about microbial physiology and metabolism.

Prerequisites:- Basic knowledge of microbial physiology and metabolism.

Sr. No.	Course contents	Teaching Hours
1	Microbial Growth and Effect of Environment on Microbial Growth:	110015
	Definitions of growth, measurement of microbial growth, Batch culture, Continuous	
	culture, generation time and specific growth rate, synchronous growth, diauxic growth	
	curve, Microbial growth in response to environment -Temperature (psychrophiles,	
	mesophiles, thermophiles, extremophiles, thermodurics, psychrotrophs), pH	
	(acidophiles, alkaliphiles), solute and water activity (halophiles, xerophiles, osmophilic),	12
	Oxygen (aerobic, anaerobic, microaerophilic, facultative aerobe, facultative	
	anaerobe), barophilic. Microbial growth in response to nutrition and energy -	
	Autotroph/Phototroph, heterotrophy, Chemolithoautotroph, Chemolithoheterotroph,	
	Chemoheterotroph, Chemolithotroph, photolithoautotroph, Photoorganoheterotroph.	
2	Nutrient uptake and Transport:	
	Passive and facilitated diffusion, Primary and secondary active transport, concept of	10
	uniport, symport and antiport, Group translocation Iron uptake	
3	Chemoheterotrophic Metabolism - Aerobic Respiration:	
	Concept of aerobic respiration, anaerobic respiration and fermentation Sugar	
	degradation pathways i.e. EMP, ED, Pentose phosphate pathway TCA cycle, Electron	16
	transport chain: components of respiratory chain, comparison of mitochondrial and	
	bacterial ETC, electron transport phosphorylation, uncouplers and inhibitors.	
4	Chemoheterotrophic Metabolism- Anaerobic respiration and fermentation:	
	Anaerobic respiration with special reference to dissimilatory nitrate reduction	
	(Denitrification; nitrate/nitrite and nitrate/ammonia respiration; fermentative nitrate	6
	reduction), Fermentation - Alcohol fermentation and Pasteur effect; Lactate	
	fermentation (homofermentative and heterofermentative pathways), concept of linear	

		\sim
	and branched fermentation pathways.	
5	Chemolithotrophic and Phototrophic Metabolism:	
	Introduction to aerobic and anaerobic chemolithotrophy with an example each.	
	Hydrogen oxidation (definition and reaction) and methanogenesis (definition and	10
	reaction), Introduction to phototrophic metabolism - groups of phototrophic microorganisms, anoxygenic vs. oxygenic photosynthesis with reference to	
	photosynthesis in green bacteria, purple bacteria and cyanobacteria	
6	Nitrogen Metabolism: an overview	
	Introduction to biological nitrogen fixation, Ammonia assimilation, Assimilatory nitrate	6
	reduction, dissimilatory nitrate reduction, denitrification	
	Total Hours	60

Learning Outcomes:- The students are expected to Understand the microbial physiology and metabolism of microbes.

Teaching & Learning Methodology:-

- Use of audiovisual aids.
- Use of charts.
- Student interaction, group discussion, seminar, quizzes, assignment, brain storming session

- 1. Madigan MT, and Martinko JM (2014). Brock Biology of Microorganisms. 14th edition. Prentice Hall International Inc.
- 2. Moat AG and Foster JW. (2002). Microbial Physiology. 4th edition. John Wiley & Sons.
- 3. Reddy SR and Reddy SM. (2005). Microbial Physiology. Scientific Publishers India.
- 4. Gottschalk G. (1986). Bacterial Metabolism. 2nd edition. Springer Verlag.
- 5. Stanier RY, Ingrahm JI, Wheelis ML and Painter PR. (1987). General Microbiology. 5th edition, McMillan Press.

S.No	Experiment
1	Study and plot the growth curve of <i>E. coli</i> by turbidometric and standard plate
	count methods.
2	Calculations of generation time and specific growth rate of bacteria from the
	graph plotted with the given data
3	Effect of temperature on growth of E. coli
4	Effect of pH on growth of E. coli
5	Effect of carbon and nitrogen sources on growth of E.coli
6	Effect of salt on growth of E. coli
7	Demonstration of alcoholic fermentation
8	Demonstration of the thermal death time and decimal reduction time of E. coli.

SEMESTER: III

FACULTY OF SCIENCES DEPARTMENT OF LIFE SCIENCES

COURSE: B.Sc. SUBJECT NAME: Microbial Genetics SUBJECT CODE: 4SC03MIG1 Teaching & Evaluation Scheme:-

Teaching hours/week Credit **Evaluation Scheme/semester** Theory Practical Sessional University Total Th Pr Tu Total Internal Exam Exam University Marks Marks Hrs Marks Hrs Pr TW 4 0 4 8 6 30 1 70 3 30 70 200 _

Objectives:- The objective of this course is that the students can learn about microbial Genetics.

Prerequisites:- Basic knowledge of microbial Genetics.

Sr. No.	Course contents	Teaching Hours
1	Genome Organization and Mutations:Genome organization: E. coli, Saccharomyces. Mutations and mutagenesis: Definitionand types of Mutations; Physical and chemical mutagens; Molecular basis ofmutations; Functional mutants (loss and gain of function mutants); Uses of mutationsReversion and suppression: True revertants; Intra- and inter-genic suppression; Amestest; Mutator genes	18
2	Plasmids: Types of plasmids – F plasmid, R Plasmids, colicinogenic plasmids, Ti plasmids, linear plasmids, yeast- 2 μ plasmid, Plasmid replication and partitioning, Host range, plasmid-incompatibility, plasmid amplification, Regulation of copy number, curing of plasmids	10
3	Mechanisms of Genetic Exchange:Transformation - Discovery, mechanism of natural competenceConjugation - Discovery, mechanism, Hfr and F' strains, Interrupted matingtechnique and time of entry mappingTransduction - Generalized transduction, specialized transduction, LFT & HFTlysates, Mapping by recombination and co-transduction of markers	12
4	Phage Genetics: Features of T4 genetics , Genetic basis of lytic versus lysogenic switch of phage lambda	8
5	Transposable elements :Prokaryotic transposable elements – Insertion Sequences, composite and non- composite transposons, Replicative and Non replicative transposition, Mu transposon,	12

60

Eukaryotic transposable elements - Yeast (Ty retrotransposon), Drosophila (P elements), Maize (Ac/Ds) Uses of transposons and transposition

Learning Outcomes:-

At the end of the course the student would have sufficient knowledge of Microbial Genetics

Teaching & Learning Methodology:-

- Use of audiovisual aids.
- Use of charts.
- Student interaction, group discussion, seminar, quizzes, assignment, brain storming session.

- 1) Klug WS, Cummings MR, Spencer, C, Palladino, M (2011). Concepts of Genetics, 10th Ed., Benjamin Cummings
- Krebs J, Goldstein E, Kilpatrick S (2013). Lewin's Essential Genes, 3rd Ed., Jones and Bartlett Learning
- 3) **Pierce BA** (2011) Genetics: A Conceptual Approach, 4th Ed., Macmillan Higher Education Learning
- 4) **Watson JD, Baker TA, Bell SP et al**. (2008) Molecular Biology of the Gene, 6th Ed., Benjamin Cummings
- 5) Gardner EJ, Simmons MJ, Snustad DP (2008). Principles of Genetics. 8th Ed. Wiley-India
- 6) **Russell PJ**. (2009). *i* Genetics- A Molecular Approach. 3rd Ed, Benjamin Cummings

S.No	Experiment									
1	Preparation of Master and Replica Plates									
2	Study the effect of chemical (HNO2) and physical (UV) mutagens on bacterial cells									
3	Study survival curve of bacteria after exposure to ultraviolet (UV) light									
4	Isolation of Plasmid DNA from <i>E.coli</i>									
5	Study different conformations of plasmid DNA through Agaraose gel electrophoresis.									
6	Demonstration of Bacterial Conjugation									
7	Demonstration of bacterial transformation and transduction									
8	Demonstration of AMES test									

FACULTY OF SCIENCES <u>DEPARTMENT OF LIFE SCIENCES</u> B.Sc. SEMESTER: III

COURSE: B.Sc. SUBJECT NAME: SEMINAR SUBJECT CODE: 4SC03SEM1 Teaching & Evaluation Scheme:-

		8		~~~~		UIIIU	•					
Tea	ching	hour	s/week	Credit	Evaluation Scheme/semester				Practical Internal Pr TW			
						Theory			Pra			
Th	Tu	Pr	Total		Sessio Exai		Univer Exar	·	Internal University			Total Marks
					Marks	Hrs	Marks	Hrs	Pr	TW		
0	0	4	4	2					15	-	35	50

Learning Outcomes:- The students are expected to developing communication skill.

FACULTY OF SCIENCES <u>DEPARTMENT OF LIFE SCIENCES</u> B.Sc. SEMESTER: III

COURSE: B.Sc. SUBJECT NAME: MICROBIAL METABOLISM SUBJECT CODE: 4SC03MMB1 Teaching & Evaluation Scheme:-

I	Tea	ching	hour	s/week	Credit			Evalu	ation S	chem	e/seme	ster	
ľ							The	eory			Pra	ctical	
	Th	Tu	Pr	Total		Sessio Exai		Univer Exai	•	Inte	ernal	University	Total Marks
						Marks	Hrs	Marks	Hrs	Pr	TW		
	4	0	4	8	6	30	1	70	3	30		70	200

Objectives:- The objective of this course is that the students can learn about microbial metabolism.

Prerequisites:- Basic knowledge of biological sciences.

Sr. No.	Course contents	Teachin g Hours
1	Microbial Growth and Effect of Environment on Microbial Growth: Definitions of growth, Batch culture, Continuous culture, generation time and specific growth rate, effect of Temperature and pH. Effect of oxygen concentration on growth Nutritional categories of microorganisms	12
2	Nutrient uptake and Transport: Passive and facilitated diffusion, Primary and secondary active transport, concept of uniport, symport and anti-port, Group translocation, Iron uptake	10
3	Chemoheterotrophic Metabolism-Aerobic Respiration: Concept of aerobic respiration, anaerobic respiration and fermentation Sugar degradation pathways i.e.EMP, ED, Pentose phosphate pathway Electron transport chain: components of respiratory chain, comparison of mitochondrial and bacterial ETC, electron transport phosphorylation. TCA cycle,	16

4	Chemoheterotrophic Metabolism-Anaerobic respiration and fermentation:	
	Anaerobic respiration with special reference to dissimilatory nitrate reduction (Denitrification; nitrate/nitrite and nitrate/ammonia respiration;	
	Fermentative nitrate reduction)	6
	Fermentation-Alcohol fermentation and Pasteur effect;Lactate fermentation(homo fermentative and hetero fermentative pathways),concept of linear and branched	-
	Fermentation pathways	
5	Chemolithotrophic and Phototrophic Metabolism:	
	Introductiontoaerobicandanaerobicchemolithotrophywithanexampleeach.Hydrog enoxidation (definition and reaction)and methanogenesis (definition and reaction)	10
	Introduction to phototrophic metabolism groups of phototrophic microorganisms, anoxygenic <i>vs</i> .oxygenic photosynthesis with reference to photo synthesis in green bacteria and cyanobacteria	
6	Nitrogen Metabolism-an overview	
	Introduction to biological nitrogen fixation, Ammonia assimilation, Assimilatory nitrate reduction	6
	Total Hours	60

Learning Outcomes:-

At the end of the course the student would have sufficient knowledge of Microbial metabolism.

Teaching & Learning Methodology:-

- Use of audiovisual aids.
- Use of charts.
- Student interaction, group discussion, seminar, quizzes, assignment, brain storming session.

- 1. **Madigan MT, and Martinko JM**(2014). Brock Biology of Microorganisms. 14th edition. Prentice Hall International Inc.
- 2. **MoatAG and FosterJW**.(2002). Microbial Physiology. 4th edition. John Wiley & Sons

- 3. **Reddy SR and Reddy SM**.(2005).Microbial Physiology.Scientific Publishers India
- 4. Gottschal kG.(1986).Bacterial Metabolism. 2nd edition. Springer Verlag
- 5. Stanier RY, Ingrahm JI, Wheelis ML and Painter PR(1987). General Microbiology. 5th edition, McMillan Press.
- 6. WilleyJM, SherwoodLM, and WoolvertonCJ.(2013). Prescott's Microbiology. 9th edition.McGraw HillHigherEducation.

S.No	Experiment
1	Study and plot the grow the curve of <i>E.coli</i> by tubidiometric and Standard Plate count methods
2	Calculations of generation time and specific growth rate of bacteria from the graph plotted with the given data
3	Effect of temperature ongrowth of <i>E.coli</i>
4	Effect of pH on growth of <i>E.coli</i>
5	Effect of Nitrogen and Carbon sources on <i>E.Coli</i>
6	Effect of salt on growth of <i>E.coli</i>
7	Demonstration of alcoholic fermentation
8	Demonstration of the thermal death time and decimal reduction time of <i>E.coli</i> .

FACULTY OF SCIENCES DEPARTMENT OF LIFE SCIENCES

SEMESTER: III

COURSE: B.Sc. SUBJECT NAME: MOLECULAR BIOLOGY SUBJECT CODE: 4SC03MOB1 Teaching & Evaluation Scheme:-

Tea	ching	hour	s/week	Credit	Evaluation Scheme/semester							
						Theory Practical						
Th	Tu	Pr	Total		Session	nal University Internal			Total			
1 11	1 u	F T	Total		Exar	n	Exar	n	Internal		University	Marks
					Marks	Hrs	Marks	Hrs	Pr	TW		
4	0	4	8	6	30	1	70	3	30		70	200

Objectives:- The objective of this course is that the students can learn about microbial Genetics.

Prerequisites:- Basic knowledge of microbial Genetics.

Course content:-

Sr. No.	Course contents	Teaching Hours
1	Structures of DNA and RNA/Genetic Material: DNA structure, Salient features of double helix, Types of DNA, denaturation and renaturation, topo isomerases; Organization of DNA Prokaryotes, Viruses,	9
2	Eukaryotes. RNA Structure Regulation of gene Expression: Principles of transcriptional regulation, regulation at initiation with examples from lacandtrpoperons	5
3	Mutations: Mutations and mutagenesis: Definition and types of Mutations; Physical and chemical mutagens; Uses of mutations ,DNA repair mechanisms	4
4	Mechanisms of Genetic Exchange: Transformation-Discovery, mechanism of natural competence Conjugation- Discovery, mechanism, Hfr and F'strains Transduction-Generalized transduction, specialized transduction	8
5	Plasmids and Transposable Elements: Property and function of plasmids, Types of plasmids. Prokaryotic transposable elements–Insertion Sequences, composite and non-composite transposons, Replicative and Non replicative transposition, Uses of transposons and transposition.	4
Total Ho		30

Learning Outcomes:-

At the end of the course the student would have sufficient knowledge of Microbial Genetics

Teaching & Learning Methodology:-

- Use of audiovisual aids.
- Use of charts.

• Student interaction, group discussion, seminar, quizzes, assignment, brain storming session.

Books Recommended:

- Watson JD ,Baker TA, Bell SP, Gann A, Levine M and LosickR(2008) Molecular Biology of the Gene,6th edition, Cold Spring Harbour Lab. Press, Pearson Publication
- 2. Becker WM, Kleinsmith LJ, Hardin J and Bertoni GP (2009) The World of the Cell,7th edition, Pearson Benjamin Cummings Publishing ,San Francisco
- DeRobertis EDP and DeRobertis EMF(2006) Cell and Molecular Biology, 8th edition. Lippincott Williams and Wilkins, Philadelphia
- 4. **KarpG**(2010) Cell and Molecular Biology: Concepts and Experiments, 6thedition,

John Wiley & Sons.Inc.

- SambrookJ and Russell DW.(2001). Molecular Cloning: A Laboratory Manual. 4thEdition, Cold Spring Harbour Laboratory press.
- 6. **Krebs J, Gold stein E, KilpatrickS** (2013). Lewin's Essential Genes, 3rd Edittion. Jones and Bartlett Learning
- 7. Gardner EJ, Simmons MJ, Snustad DP(2008).Principles of Genetics.8thEd.Wiley-India
- 8. Klug WS, Cummings MR, Spencer, C, Palladino, M(2011). Concepts of Genetics, 10th Ed., Benjamin Cummings
- Maloy SR, CronanJE and FriefelderD(2004) Microbial Genetics 2nd EDITION., Jones and Barlett Publishers
- 10. **RussellPJ.**(2009).*i*Genetics-A Molecular Approach.3rd Ed, Benjamin Cummings.

<u>C. U. SHAH UNIVERSITY</u>

S.No	Experiment
1	Study of different types of DNA and RNA using micrographs and model/schematic representations
2	Study of semi-conservative replication of DNA through micrographs/schematic representations
3	Estimation of salmon sperm/calf thymus DNA using colorimeter(diphenylamine reagent)or UV spectrophotometer(A260 measurement)
4	Resolution and visualization of DNA by Agarose Gel Electrophoresis.
5	Resolution and visualization of proteins by Polyacrylamide Gel Electrophoresis(SDS-PAGE).
6	Study the effect of chemical (HNO2) and physical(UV) mutagens on bacterial cells
7	Study survival curve of bacteria after exposure to ultraviolet(UV)light
8	Demonstration of Bacterial Transformation and calculation of transformation efficiency.

FACULTY OF SCIENCES DEPARTMENT OF LIFE SCIENCES

COURSE: B.Sc. SEMESTER: III SUBJECT NAME: BIOFERTILIZERS AND BIOPESTICIDE SUBJECT CODE: 4SC03BAB1 Teaching & Evaluation Scheme:-

Tea	ching	hour	s/week	Credit	Evaluation Scheme/semester							
					Theory P				Pra	octical		
Th	Tu	Pr	Total		Sessio Exai		Univer Exai	•	Internal		University	Total Marks
					Marks	Hrs	Marks	Hrs	Pr	TW		
2	0	0	2	2	15	1	35	1.5				50

Objectives:- The objective of this course is that the students can learn about microbial Genetics.

Prerequisites:- Basic knowledge of microbial Genetics.

Sr. No.	Course contents	Teaching Hours
1	Biofertilizers:	
	General account of the microbes used as biofertilizers for various crop plants	
	and their advantages over chemical fertilizers. Symbiotic N2 fixers:	
	Rhizobium- Isolation, characteristics, types, inoculums production and field	
	application, legume/pulses plants,	10
	Frankia -Isolation, characteristics, Alder, Casurina plants, non-leguminous	
	crop symbiosis.	
	Cyanobacteria, Azolla Isolation, characterization, mass multiplication, Role in	
	rice cultivation, Crop response, field application.	
2	Non-Symbiotic Nitrogen Fixers: Free living Azospirillum, Azotobacter-	4
	freeisolation, characteristics, mass inoculums, production.	+
3	Phosphate Solubilizers: Phosphate solubilizing microbes-Isolation,	4
	characterization, mass inoculum production, field application	4
4	Mycorrhizal Biofertilizers: Importance of mycorrizal inoculum, types of	
	mycorrhizae and associated plants, Mass inoculum production of VAM, field	5
	applications of Ectomycorrhizae and VAM.	
5	Bioinsecticides:	
	General account of microbes used as bio insecticides and their advantages	7
	over synthetic pesticides, <i>Bacillus thuringiensis</i> , production, Field	/
	applications, Viruses-cultivation and field applications.	
	Total Hours	30

Learning Outcomes:-

At the end of the course the student would have sufficient knowledge of Microbial Genetics

Teaching & Learning Methodology:-

- Use of audiovisual aids.
- Use of charts.
- Student interaction, group discussion, seminar, quizzes, assignment, brain storming session.

- 1. Kannaiyan, S.(2003).Bioetchnology of Biofertilizers, CHIPS, Texas.
- 2. **MahendraK.Rai**(2005).Handbook of Microbial biofertilizers, The Haworth Press, Inc.NewYork.
- 3. **Reddy, S. M.et.al**. (2002). Bioinoculants for sustain able agriculture and forestry, Scientific Publishers.
- 4. **Subba Rao N.S** (1995) Soil microorganisms and plant growth Oxford and IBH publishing co.Pvt. Ltd. NewDelhi.
- 5. SaleemF and ShakooriAR(2012) Development of Bioinsecticide, Lap Lambert Academic Publishing GmbHKG
- 6. Aggarwal SK(2005) Advanced Environmental Biotechnology, APH publication.

FACULTY OF SCIENCES DEPARTMENT OF LIFE SCIENCES

COURSE: B.Sc. SEMESTER: III SUBJECT NAME: MICROBIOLOGICAL ANALYSIS OF AIR AND WATER SUBJECT CODE: 4SC03MAW1

Teaching & Evaluation Scheme:-

Tea	ching	hour	s/week	Credit	Evaluation Scheme/semester							
						The	eory			Pra	octical	
Th	Tu	Pr	Total		Sessio Exai		Univer Exar	•	Internal		University	Total Marks
					Marks	Hrs	Marks	Hrs	Pr	TW		
2	0	0	2	2	15	1	35	1.5				50

Objectives:- The objective of this course is that the students can learn about microbiological analysis of air and water.

Prerequisites:- Basic knowledge of biological sciences.

Sr.	Course contents	Teaching
No.		Hours
1	Aero microbiology:	
	Bio aerosols, Airborne microorganisms (bacteria, Viruses, fungi) and	4
	their impact on human health and environment, significance in food and	4
	pharma industries and operation theatres, allergens	
2	Air Sample Collection and Analysis:	
	Bio aerosol sampling, air samplers, methods of analysis, CFU, culture	7
	media for bacteria and fungi, Identification characteristics	
3	Control Measures:	
	Fate of bio aerosols, inactivation mechanisms-UV light, HEPA filters,	4
	desiccation, Incineration	
4	Water Microbiology:	4
	Water borne pathogens, water borne diseases	4
5	Microbiological Analysis of Water:	
	Sample Collection, Treatment and safety of drinking (potable) water,	
	Methods to detect potability of water samples:(a) Standard Qualitative	7
	procedure: presumptive / MPN tests, confirmed and completed tests for	/
	faecal coli forms (b)Membrane filter technique and (c)Presence/absence	
	tests	
6	Control Measures:	4
	Precipitation, chemical disinfection, filtration, high temperature, UV light	4
	Total Hours	30

Learning Outcomes:-

At the end of the course the student would have sufficient knowledge of Microbes present in air and water and their analytical techniques.

Teaching & Learning Methodology:-

- Use of audiovisual aids.
- Use of charts.
- Student interaction, group discussion, seminar, quizzes, assignment, brain storming session.

- 1. daSilvaN, Taniwaki MH, JunqueiraVC, SilveiraN, NascimentoMS, GomesRAR(2012) Microbiological Examination Methods of Food and Water A Laboratory Manual, CRC Press.
- AtlasR Mand BarthaR.(2000). Microbial Ecology: Fundamentals & Applications.
 4th edition. Benjamin/Cummings Science Publishing, USA.
- **3.** MaierRM, PepperIL and GerbaCP.(2009).Environmental Microbiology.2ndedition, Academic Press.
- **4.** HurstCJ, CrawfordRL, GarlandJL, LipsonDA(2007) Manual of Environmental Microbiology, 3rdedition, ASMpress